在狭义相对论中,信号传播的极限速度是光速,相互作用只能是定域的,这一理念是爱因斯坦早期反对量子力学完备性的强烈理由[20]。爱因斯坦的质疑推动了隐变量理论和贝尔不等式的检验,最终物理学家发现了量子力学的固有非定域特征。
物理学家研究微观世界,离不开量子场论,而量子场论是建立在量子力学和狭义相对论的基础上的[21]。
除了启发和指导新理论,狭义相对论对物理学家思考问题的方式产生了深远的影响。洛伦兹群反映连续的时空对称性,它要求物理的拉氏量应具有时空转动(boost)和空间旋转不变性,这启发物理学家去发现系统潜在的自由度和对称性,如宇称、同位旋、规范对称性等。
狭义相对论的困难
在创立狭义相对论以后,爱因斯坦认识到该理论存在两个严重的困难[22]:
1.狭义相对论在众多的参考系中,承认了惯性参考系相比其他参考系具有优越性,物理学规律在所有惯性系中都是平权的;然而,惯性系本身却无法被定义。
2.爱因斯坦无法将万有引力定律纳入狭义相对论的框架,万有引力定律无法被修改为洛伦兹协变的形式。
通过对这两个困难的思考,爱因斯坦创立了广义相对论。
“唉!”
“看我的万粒天神!”
“原子核
既然电子带负电荷[5],而原子呈电中性,很明显,原子内部必然有另外的带正电荷的粒子,以抵消电子的负电荷。20世纪初叶,工作于曼彻斯特的新西兰裔物理学家欧内斯特·卢瑟福(Ernest Rutherford,1871—1937)(后来继汤姆孙任卡文迪什实验室主任)证明,这一正电荷与原子的大部分质量一起,都集中在很小的中心核内。
原子核结构
起初人们认为,原子核是电子与荷正电的质子的混合物。到了1932年,也在卡文迪什实验室工作的詹姆斯·查特威克(James Chadwick,1891—1937)才发现了不带电的质量几乎与质子一样的中子。于是原子核被解释成由强核相互作用,或强力,维持在一起的质子和中子的集合。
那时,这三种粒子——电子、质子和中子
——似乎是构成一切物质的仅有基本粒子,但宇宙射线研究和粒子加速器中高能粒子束互相轰击的实验却表明,还存在其他类型‘亚原子’粒子;不过这些‘新’粒子是不稳定的,它们将迅速‘衰变’成其他粒子簇射,以我们熟悉的电子、质子和中子告终。
重要的是应该懂得,这些新粒子根本不是存在于粒子加速器中互相轰击的粒子(如质子)的‘内部’;它们是从注入加速器的能量中,按照阿尔伯特`爱因斯坦的公式(或者,在所讨论的情况下,更恰当的是)创造出来的。
然而,在它们的短暂寿命期间,它们是具备质量和电荷等特征的真正粒子。这样的粒子,应该曾经在大爆炸的高能条件下大量出现。
介子
物理学家不知道如何将这些粒子纳入一个圆满的物理理论,他们试图解释这些粒子之间基本力的作用方式。他们这样做时,仿效光子携有带电粒子之间的电磁力,想借助另一类携带着力的粒子——介子。但介子又是用什么东西制造的呢?
夸克
夸克的组成
1964年物理学家盖尔曼提出夸克模型,认为强子由更基本的成分组成,这种成分叫做夸克quark。夸克模型经过几十年的发展,已被多数物理学家接受[6]。
有一段时期,局面极其混乱。但1960和1970年代发展的夸克理论使局面趋于明朗。夸克理论认为,所有已知粒子可以分成两族。一族由夸克组成,能够‘感知’只在夸克之间起作用的强力,叫做强子。另一族叫做轻子,它们不能感知强力,但参与以所谓的弱力做媒介的相互作用(或称弱相互作用),比如,放射衰变(包括β衰变)过程就是弱相互作用引起的。强子既能参与强相互作用,也能感知弱力。
轻子
是名副其实的基本粒子,它们不由任何别的东西构成。典范的轻子就是电子,电子与另一种叫做中微子(严格说应是电子中微子)的轻子相伴生。当电子参与放射衰变这类过程时,总有中微子卷入。
轻子
由于一些无人知晓的原因,这一基本图像已经复制了两次,产生了三‘代’轻子。除电子本身外,还有比较重的叫做μ介子,它们除了比电子重207倍外,完全像是电子;还有一种甚至更重的粒子叫做τ粒子,它的质量接近质子的两倍。这两种重电子各有其自己的中微子,所以轻子族有六种(三对)粒子。虽然μ介子和τ粒子都能在粒子加速器中用能量制造或从宇宙线产生,但它们很快衰变,转化成电子或中微子。
这章没有结束,请点击下一页继续阅读!
喜欢洪荒之鸿元成道请大家收藏:(m.zjsw.org)洪荒之鸿元成道爪机书屋更新速度全网最快。