因此,集群行为信息架构的正式框架可以包含所有这些元素,重点在它们间的相互作用及随时间的演变。在这个方向上的第一步是接受一种独立于应用领域的通用语言,使我们有可能对信息处理的所有方面进行正式建模。当然这种共同语言要由信息论提供。
度量复杂系统的信息架构
信息论度量方法引入后不久就首先被用于研究集群行为:推断蜜蜂的摇摆舞(Haldane amp; Spurway 1954)和蚂蚁信息素踪迹(Wilson,1962)所编码食物来源的方向信息大小。但应用信息论对集群现象进行系统研究却相当零散(Dall et al. 2005)。例如,统计物理学将互信息用于研究二维伊辛模型(Ising model)中的相变(Matsuda et al. 1996;Gu et al. 2007),由维切克模型[1](Vicsek model)驱动的自推进粒子蜂群模拟(Wicks al.,2007),以及调节模型(regulatory models)中的随机布尔网络(Ribeiro et al. 2008)。在所有这些情况下,互信息在无序或接近相变阶段时均达到峰值。互信息和块熵(block-entropy)——一种测量有限连续事件不确定性熵的变体(Shannon 1948),已被用于研究蚂蚁信息素铺设模拟中的群体决策(Klyubin et al. 2004),此项研究表明有限的噪声有利于信息传递(Meyer 2017)。最近,Gelblum 等人(2015)的研究则显示,附着在集体运输上的蚂蚁会向系统输入信息,但这种信息只在短时间内有效。以上这些测量方法不仅被用作分析工具,还被应用于人工进化控制器,设计模块化的集群运动行为(Prokopenko et al. 2006)和多机器人系统(Sperati al et al. 2008)等等。
信息论涉及大量不同科技领域信息的量化、存储和传递(Cover amp;Thomas 2005)。例如在生物学的背景下,信息论被广泛用于研究神经系统的功能并确定相关脑区结构(Honey et al. 2007;Vakorin et al. 2009;Nigam et al. 2016;Ito et al. 2011;Lizier et al. 2011;Vicente et al. 2011)。主动信息(见前面公式)被用于研究元胞自动机的信息存储(Lizier et al. 2012b)、神经信息处理(Wibral et al. 2014)以及蜂群动力学(Wang et al. 2012)等,而超额熵则主要应用于复杂物理现象的研究(CrutchfieldFeldman 2003)。
喜欢动作之旅请大家收藏:(m.zjsw.org)动作之旅爪机书屋更新速度全网最快。