文曲在古

戴建文

首页 >> 文曲在古 >> 文曲在古最新章节(目录)
大家在看退婚后,高冷女帝后悔了 军阀皇子:开局买下双胞胎侍女 曹贼系统:马踏樱花 、统治全球! 帝国崛起:开局建设封地,打造钢铁皇朝! 大明国师 大明暴君,我为大明续运三百年 抗日之兵魂传说 巅峰三国:开局获得凤翅镏金镋 大明新命记 红楼:开局加载嫪毐模板 
文曲在古 戴建文 - 文曲在古全文阅读 - 文曲在古txt下载 - 文曲在古最新章节 - 好看的历史小说

第248章 函数之妙--x/e^x

上一章书 页下一页阅读记录

《函数之妙——x/e^x》

一日,众学子齐聚,戴浩文先生轻捋胡须,微笑道:“今日,吾与汝等探讨新之函数,f(x)=x/e^x。”

学子们皆面露好奇之色,静候先生讲解。

“先观此函数之定义域。因指数函数 e^x 恒大于零,故 x 可取任意实数,此函数之定义域为全体实数。”

“再论其渐近线。当 x 趋向于正无穷时,e^x 增长速度远快于 x,故此时 f(x)=x/e^x 趋近于零。此表明函数有水平渐近线 y = 0。至于垂直渐近线,因函数在整个定义域内皆有定义,故不存在垂直渐近线。”

学子甲问道:“先生,此渐近线之意义何在?”

戴浩文先生答曰:“渐近线可助吾等理解函数在无穷远处及特殊点附近之行为。水平渐近线显示函数在无穷大时之趋势,为吾等提供对其长远变化之直观认识。于实际问题中,可借此判断函数之增长或衰减是否有极限。”

“且看其导数。令 g(x)=f(x)之导数,则 g(x)=(e^x - x*e^x)/(e^x)^2=(1 - x)/e^x。”

“分析导数之正负,可判函数之单调性。当 1 - x>0,即 x<1 时,g(x)>0,f(x)单调递增;当 x>1 时,g(x)<0,f(x)单调递减。故函数在(-∞,1)单调递增,在(1,+∞)单调递减。”

学子乙疑惑道:“先生,此单调性有何用处?”

先生曰:“知其单调性,可助吾等了解函数值之变化规律。于实际问题中,若函数代表某种变化过程,如经济增长、物理现象等,单调性可揭示该过程是递增还是递减,进而为决策提供依据。”

“又因函数在 x = 1 处由增变减,故 x = 1 为函数之极大值点。将 x = 1 代入函数 f(x),可得极大值为 f(1)=1/e。”

学子丙问道:“先生,此极大值意义何在?”

先生答曰:“极大值可视为函数在一定范围内所能达到之最大值。于实际问题中,若函数代表某种效益或性能,极大值点则对应最佳状态。如在工程设计中,可通过求函数极大值来确定最优参数,以实现最佳效果。”

“今论函数之图像变换。设 h(x)=x/e^x + a(a 为常数),此乃对函数 f(x)进行垂直平移。当 a>0 时,函数图像整体向上平移 a 个单位;当 a<0 时,函数图像整体向下平移|a|个单位。其导数与 f(x)相同,故单调性与极大值皆不变,仅函数图像在 y 轴上之位置改变。”

学子丁问道:“先生,此平移变换于实际有何影响?”

先生曰:“平移变换可用于调整模型之基准线。如在经济领域,若考虑加入固定成本项,便相当于对函数进行垂直平移。可更好地反映实际经济状况,为决策提供更准确之依据。”

“再看伸缩变换。设 k(x)=kx/e^(kx)(k 为非零常数)。当 k>1 时,函数图像在 x 轴方向上被压缩;当 0<k<1 时,函数图像在 x 轴方向上被拉伸。其导数为 k*(1 - kx)/e^(kx)。分析其单调性与极值,可发现随着 k 之变化,函数性质亦发生改变。”

学子戊问道:“先生,此伸缩变换有何深意?”

先生曰:“伸缩变换可让吾等更直观地看到函数形状之变化,从而更好地理解函数性质随参数变化之规律。于实际问题中,可根据不同情况调整参数 k,以适应具体需求。如在物理实验中,可通过调整参数来模拟不同条件下之现象。”

“且观函数与三角函数之联系。设 p(x)=x/e^x * sinx。求其导数,p'(x)=[(1 - x)/e^x * sinx + x/e^x * cosx]。此函数性质复杂,然可通过观察不同区间之取值情况以了解其大致性质。”

学子己问道:“先生,此函数与正弦函数结合有何应用?”

先生曰:“于物理学中,某些波动现象或涉及此类函数组合。如在研究声波传播时,可能出现与指数函数和正弦函数相关之模型。通过分析此函数,可更好地理解和预测物理现象。”

“又设 q(x)=x/e^x * cosx。求其导数,q'(x)=[(1 - x)/e^x * cosx - x/e^x * sinx]。同样,分析其性质较为复杂,可通过特殊点和区间取值进行初步判断。”

学子庚问道:“先生,此函数与余弦函数结合与前者有何不同?”

先生曰:“与正弦函数结合之函数 p(x)和与余弦函数结合之函数 q(x)在性质上有差异。导数表达式不同,致其单调性和极值分析方法亦不同。且于实际应用中,可根据具体问题特点选择不同函数组合。”

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

喜欢文曲在古请大家收藏:(m.zjsw.org)文曲在古爪机书屋更新速度全网最快。

上一章目 录下一页存书签
站内强推逍遥四公子 红楼大当家 影视之每次都有新技能 重生长姐种田忙 十天一天赋,成为吸血鬼的我太BUG了 斗罗之玄天传奇 军伍行 私密按摩师 重生另嫁小叔,夫妻联手虐渣 修仙:开局是个瞎眼乞丐 造化血狱体 我靠双修成就大能 洪荒:开局我与鸿钧争夺气运 诡异入侵,我反杀不过分吧? 四合院大国工匠 量子血灵珠传奇 我有一刀 末世大佬零元购地狱模式 重生红楼之庶子贾环 龙族之重临旧日 
经典收藏逍遥四公子 超时空史记 衣冠不南渡 天唐锦绣 北魏遗史 三国之超级培育系统 红楼蓉大爷 大明皇太孙 秦功 重整山河,从穿成宋钦宗开始 孤才不要做太子 混在大唐的工科宅男 骗了康熙 皇后请自重,我真不想代替陛下呀! 这个大明好像不太一样 化工大唐 抗战之中国远征军 三国:我为刘禅,霄汉永灿 火影之恶魔法则 大明最强锦衣卫,一曲天外飞剑来 
最近更新秦始皇荡平六国 开局地主梦,朝堂强拽成幕后主宰 明末:懒汉的逆袭人生 这是一条神奇的天幕 我不叫谢石头 穿越大明朱雄英 醒来成了桓侯张翼德 这个王朝叫大兴 红楼,从文豪开始崛起 穿越大唐伴生游戏能具现 穿越大明成为朱重八的兄弟朱重九 魂穿古代跟太子拜把子 三国:被义父背刺,我反手篡位 雍正王朝之四阿哥传奇 水浒:开局买下梁山,造反不招安 从小县令到主宰万界 我今年八岁,前来酸枣会盟 华夏最强主播:从主播到全球帝王 红楼:从难民开始崛起 三国:开局酒馆老板,带曹操躺赢 
文曲在古 戴建文 - 文曲在古txt下载 - 文曲在古最新章节 - 文曲在古全文阅读 - 好看的历史小说