重生学神有系统

一碗酸梅汤

首页 >> 重生学神有系统 >> 重生学神有系统最新章节(目录)
大家在看都市医道龙神 恐怖末世,我转职为SSSS天师 四合院:激情澎湃的岁月 四合院:大学毕业进厂,压垮禽兽 四合院:从卫生员开始的快乐人生 疯了!校花妈妈给我当秘书! 四合院:秦淮茹嫁错郎 四合院:年仅十八就让我养老? 重生74:我在东北当队长 四合院开局就分家 
重生学神有系统 一碗酸梅汤 - 重生学神有系统全文阅读 - 重生学神有系统txt下载 - 重生学神有系统最新章节 - 好看的都市小说

第233章 误差反向传播算法

上一章书 页下一页阅读记录

在原本的世界里,“误差反向传播算法”(errorBack-Propagation,简称BP)出现得很早。

1974年,哈佛大学的PaulWerbos,在博士论文中首次发明了BP算法,可惜没有引起重视。

1982年,DavidParker重新发现了BP算法,然而,仍然没有太大的反响。

到了1986年,Rumelhart、Hinton和Williams三人发表了《Learningrepresentationsbyback-propagatingerrors》,重新报道了这一方法。

从那之后,人工神经网络中的误差反向传播学习算法,才得到了应有的重视,并逐渐广泛应用起来,奠定了神经网络走向完善和实用的基础。

BP算法的本质,其实是LMS(LeastMeanSquare)算法的推广。

LMS试图最小化网络输出的均方差,用于激活函数可微的感知机的训练。

只要将LMS推广到由非线性可微神经元组成的多层前馈神经网络,就得到了BP算法。

因此,BP算法也被称为广义δ规则。

BP算法有很多优点,理论依据坚实、推导过程严谨、物理概念清楚、通用性强……

可以说,它为多层神经网络的训练与实现,提供了一条切实可行的解决途径,功不可没。

但是也要看到,BP也有着自身的局限性,比如收敛速度缓慢、易陷入局部极小等。

慢点倒还不怕,可以通过调整超参数,或者升级硬件性能来解决。

可一旦陷入局部最优,就有可能无法得到全局最优解,这才是真正要命的问题。

有时可以通过选择恰当的学习速率,有限度地改善这个问题。

也有些时候无法彻底避免,只能“凑合着用”。

幸运的是,尽管理论上存在着种种不足,但在绝大多数情景下,BP算法的实际表现都还不错。

BP算法的基本思想,是将学习过程分为两个过程。

在进行训练时,首先正向传播。

将数据送入输入层,然后从前往后,送入各个隐藏层进行处理,最后将结果送到输出层,得到计算结果。

若计算结果与期望(标签)不符,则开始进行误差反向传播。

在这一步,通过损失函数计算实际输出与期望输出的误差E,然后从后往前,运用链式法则,逐层计算每个参数(w,b)相对于误差E的偏导数。

这个过程就是反向传播,从输出层开始,一直进行到输入层为止。

主要目的是将误差E分摊给各层所有单元,从而获得各层单元的误差信号。

然后以此为基准,调整各神经元的权重和偏置,直到网络的总误差达到精度要求。

江寒只花了3天,就理清了BP算法的思路,又花了两天,就将论文写了出来。

这篇论文用到的数学公式相当多,但写作的困难程度其实也就那样。

复合函数连续求偏导,任何学过一点高数的人,都能很熟练地完成。

而且,江寒重生前,在BP算法上着实下了点功夫,理解得还算透彻。

因此很轻松就将其复原了出来。

写完《神经网络训练中的误差反向传播算法》之后,江寒就开始琢磨,如何将手里的这一批论文发表出去。

也不知道怎么回事,那两篇投往三区期刊的“多层感知机”和“人工神经网络”论文,迄今没有任何回音。

既没有拒稿,也没有进入同行评议。

如果不是对投稿系统多少有点了解,江寒差点就要怀疑,编辑是不是根本没看到自己的论文?

目前已经投稿出去的十几篇论文里,已经确定发表的,只有3篇。

分别是:投往4区期刊AIREV的《论如何高效判定数据是否线性可分》;

投往1区期刊IEEETEC(TRANSACTIONSONEVOLUTIONARYCOMPUTATION,电气与电子工程师协会主办,进化计算杂志)的《马尔可夫随机场》;

以及用小号Dr.X投稿给AMC的《论感知机的局限——异或问题的无解》。

总共价值7个学术点。

江寒的系统UI上,现在很明确地显示着【学术点:-14,7】。

从这也能看出,用小号投稿是完全没问题的。

其余的论文大部分都在审稿中,有的已经进入了同行评议环节,但迟迟没有进入下一步。

也有几篇关于“感知机”应用的水货论文,没能通过同行评议,被杂志社拒稿了。

江寒随便改改,然后国内拒稿的,投给了国外,国外打回来的,投给国内。

反正不管怎么样,但凡有一点机会,都要试一试。

万一发表了,学术点它不香吗?

与此相比,脸皮什么的,一点都不重要。

14个学术点的债务,才还了一半,安全起见,最好尽快将手头的论文扔出去才行。

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

喜欢重生学神有系统请大家收藏:(m.zjsw.org)重生学神有系统爪机书屋更新速度全网最快。

上一章目 录下一页存书签
站内强推逍遥四公子 主播万人迷,榜一大哥争着宠 惊!返祖丑雌她又又又换兽夫了 我开的真是孤儿院,不是杀手堂 故事在民间 第一瞳术师 综武:玉郎江枫 剑道第一魔 豪门千金她不想装了 快穿之在年代文里做自己 求生:魔法灾变世界 开局一只猴?放肆!叫大圣! 我有一刀 苟在修仙世界当反派 我的阴婚老公是阎王 糟了,我成了星际珍惜崽 修真界第一学院 穿成早夭的团宠 帝御无疆 重生之资源大亨 
经典收藏四合院:咸鱼的美好生活 四合院里的悠哉日子 重生70年,觉醒系统从打猎开始 院士重生:回到1975当知青 东京泡沫人生 大国文娱 四合院之火红的年代 穿越北平从光荣时代开始 仕途人生 高武:无限分身,开局撑死S异兽 官场:重生后,让你们高攀不起 四合院:我有一个小世界 重生:权势巅峰 恶魔降临,我独享世间罪恶! 华娱:我能进入梦境捡属性 御兽,从契约天使开始 演技派从1998开始 重生学霸?我铸就祖国巅峰科技 16岁卖唱出道,吓懵现场歌手 这个演员路子野 
最近更新开局拿下校花,神豪就要随心所欲 就你说光系弱?吃我一记八分光轮! 可能性异世 总裁的贴身守护 异术通天路 表白被拒,我觉醒了系统! 达到好感度就能OO的游戏?! 千秋愚戏 因果折叠 权力巅峰:从一等功开始平步青云 继承家业后,我成顶流 高中三年,遍地传诵我的真名 王书 开局捡漏天价帝王绿,冰山总裁为我倾倒 消费通胀万倍,白月光女神爱意狂涌 全职御兽:我的灵宠全是大佬 重返91:从草根到商界大亨 分手后我暴富,前女友哭着跪求原谅 重回1983:开局被女知青陷害入狱 重生:清纯转校生表白我,校花哭惨了 
重生学神有系统 一碗酸梅汤 - 重生学神有系统txt下载 - 重生学神有系统最新章节 - 重生学神有系统全文阅读 - 好看的都市小说