我的超级黑科技帝国

萌主天下无敌

首页 >> 我的超级黑科技帝国 >> 我的超级黑科技帝国最新章节(目录)
大家在看超级基因优化液 末世:开局我夺取了SSS级异能 我在末世养崽崽 末世万物进化:开局豢养数万猛虎 天灾末日:贩卖数百亿版权开始 快穿之花式洗白攻略 诸天命运之主 快穿之不幸的男配 天敌饲养指南 我的私人漫威系统 
我的超级黑科技帝国 萌主天下无敌 - 我的超级黑科技帝国全文阅读 - 我的超级黑科技帝国txt下载 - 我的超级黑科技帝国最新章节 - 好看的科幻小说

第六百三十三章

上一章书 页下一页阅读记录

对于这个神经网络的训练过程,就是要确定这个参数。

训练的目标可以粗略概括为:对于每一个训练样本,对应的输出无限接近于1,而其它输出无限接近于0。

根据MichaelNielsen给出的实验结果,以上述网络结构为基础,在未经过调优的情况下,可以轻松达到95%的正确识别率。而核心代码只有74行!

在采用了深度学习的思路和卷积网络(convolutionalnetworks)之后,最终达到了99.67%的正确识别率。而针对MNIST数据集达到的历史最佳成绩是99.79%的识别率,是由LiWan,MatthewZeiler,SixinZhang,YannLeCun,和RobFergus在2013年做出的。

考虑到这个数据集里还有一些类似如下这样难以辨认的数字,这个结果是相当惊人的!它已经超越了真正人眼的识别了。

在这个过程中一步步调整权重和偏置参数的值,就必须引入梯度下降算法(gradientdescent)。

在训练的过程中,我们的神经网络需要有一个实际可行的学习算法,来逐步调整参数。

而最终的目的,是让网络的实际输出与期望输出能够尽量接近。我们需要找到一个表达式来对这种接近程度进行表征。这个表达式被称为代价函数(costfunction)

x表示一个训练样本,即网络的输入。其实一个x代表784个输入。

y(x)表示当输入为x的时候,期望的输出值;而a表示当输入为x的时候,实际的输出值。y(x)和a都分别代表10个输出值(以数学上的向量来表示)。而它们的差的平方,就表征了实际输出值和期望输出值的接近程度。越接近,这个差值就越小。

n是训练样本的数量。假设有5万个训练样本,那么n就是5万。因为是多次训练,所以要除以n对所有训练样本求平均值。

C(w,b)的表示法,是把costfunction看成是网络中所有权重w和偏置b的函数。为什么这样看呢?进行训练的时候,输入x是固定的(训练样本),不会变。在认为输入不变的情况下,这个式子就可以看成是w和b的函数。那么,式子右边的w和b在哪呢?实际上,在a里面。y(x)也是固定值,但a是w和b的函数。

总结来说,C(w,b)表征了网络的实际输出值和期望输出值的接近程度。越接近,C(w,b)的值就越小。因此,学习的过程就是想办法降低C(w,b)的过程,而不管C(w,b)的表达形式如何,它是w和b的函数,这就变成了一个求函数最小值的最优化问题。

由于C(w,b)的形式比较复杂,参数也非常多,所以直接进行数学上的求解,非常困难。

为了利用计算机算法解决这一问题,计算机科学家们提出了梯度下降算法(gradientdescent)。

这个算法本质上是在多维空间中沿着各个维度的切线贡献的方向,每次向下迈出微小的一步,从而最终抵达最小值。

由于多维空间在视觉上无法体现,所以人们通常会退到三维空间进行类比。当C(w,b)只有两个参数的时候,它的函数图像可以在三维空间里呈现。

就好像一个小球在山谷的斜坡上向下不停地滚动,最终就有可能到达谷底。这个理解重新推广到多维空间内也基本成立。

而由于训练样本的数量很大(上万,几十万,甚至更多),直接根据前面的C(w,b)进行计算,计算量会很大,导致学习过程很慢。

、于是就出现了随机梯度下降(stochasticgradientdescent)算法,是对于梯度下降的一个近似。

在这个算法中,每次学习不再针对所有的训练集,而是从训练集中随机选择一部分来计算C(w,b),下一次学习再从剩下的训练集中随机选择一部分来计算,直到把整个训练集用光。然后再不断重复这一过程。

深度神经网络(具有多个hiddenlayer)比浅层神经网络有更多结构上的优势,它有能力从多个层次上进行抽象。

从上个世纪八九十年代开始,研究人员们不断尝试将随机梯度下降算法应用于深度神经网络的训练,但却碰到了梯度消失(vanishinggradient)或梯度爆发(explodinggradient)的问题,导致学习过程异常缓慢,深度神经网络基本不可用。

然而,从2006年开始,人们开始使用一些新的技术来训练深度网络,不断取得了突破。这些技术包括但不限于:

采用卷积网络(convolutionalnetworks);

Regularization(dropout);

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

喜欢我的超级黑科技帝国请大家收藏:(m.zjsw.org)我的超级黑科技帝国爪机书屋更新速度全网最快。

上一章目 录下一页存书签
站内强推逍遥四公子 打到北极圈了,你让我继承皇位? 惊!返祖丑雌她又又又换兽夫了 我开的真是孤儿院,不是杀手堂 我还能在规则怪谈里塌房不成? 第一瞳术师 乡村大凶器 乡村欲孽 恶婆婆不洗白,只虐渣儿女 快穿之在年代文里做自己 重生之我真没想追校花 幕后,横推一切 我在萌王当帝君 诡秘凋零我不朽,旧神逝而我永生 开局一只猴?放肆!叫大圣! 龙族 末世丧尸皇快穿了 修真界第一学院 穿成早夭的团宠 漪云重生之杨门虎将 
经典收藏序列:吃神者 我能采集万物 我能无限合成超凡基因 招黑体质开局修行在废土 盛世荣华之神医世子妃 重生科技强国 学霸的军工科研系统 星际预言家 修真大佬在星际时代 穿越之星际宠妻 我的师父很多 全球冰封十日终焉 末世天启之我能强化万物 全球末世:开局觉醒吞魂天赋 豪横从一个荒岛开始 星际重生之修真小白成为种植大师 万界修炼城 神级反派 是谁在呼叫舰队? 影视人生:从金水桥边开始 
最近更新星际军校:天才指挥会发疯 星际机甲战魂 铠甲勇士:新的曙光 人在漫威,我是超级天才! 末世之尸海人途 末世狂欢:丧尸与AI 末世万族录 无限子弹,横扫四方 美食:街边小炒,馋哭星际大厨 末世觉醒,和闺蜜一起囤物资 长夜如星之沧海烬 系统之末日大巴 重生末世,必须从报仇开始 我在末世求生却做了游戏策划 末日开局一个空间苟到绝世无敌 末世天灾:重生后我要换种活法 深山里的修炼师 末世重生:我的要塞生活 星尘异梦 星兔狂奔 
我的超级黑科技帝国 萌主天下无敌 - 我的超级黑科技帝国txt下载 - 我的超级黑科技帝国最新章节 - 我的超级黑科技帝国全文阅读 - 好看的科幻小说