答案是——不再出现无质量的戈德斯通玻色子。
这其中会涉及到更为复杂的安德森-希格斯机制。
简单来说......
在一个具有局域对称性的理论中,当自发对称性破缺发生时,原本应该出现的无质量戈德斯通玻色子会与无质量的规范玻色子发生耦合。
其结果是戈德斯通玻色子的自由度被规范玻色子“吸收”,令戈德斯通玻色子不再作为独立的粒子存在于物理谱中。
一个以光速运动的无质量矢量玻色子只有两个独立的横向极化方向。
当它“吞噬”了一个具有1个自由度的标量戈德斯通玻色子后,便获得了第三个极化方向——纵向极化。
而一个具有纵向极化的矢量粒子必然是有质量的,并且其运动速度必须小于光速。
通过这种方式,规范玻色子从无质量变成了有质量。
当一个物理系统处于上述状态,即其局域规范对称性被一个标量场,或者说序参量的非零真空期望值所“有效隐藏”,导致规范玻色子获得质量时,这时就可以称这个系统处于希格斯相。
在这个相中,规范玻色子有质量,规范相互作用变为短程力。
超导体正是U(1)电磁规范理论的希格斯相的一个完美物理实现。
当某些材料冷却到其临界温度Tc以下时,其对直流电的电阻会突然降为零。
超导体不仅是完美导体,它还会主动将内部的磁场排斥到体外,使得其内部磁感应强度为零,这就是迈斯纳效应。
在传统超导体中,一个电子通过晶格时会吸引正离子,造成晶格的畸变。
这个畸变区域会吸引另一个电子,从而在两个电子之间形成了一种由声子介导的有效吸引力。
这种吸引力使得动量与自旋相反的两个电子能够克服库仑排斥,形成一个弱束缚态——库珀对。
库珀对的总自旋为零,表现得像一个复合玻色子,它们可以大量地凝聚到同一个最低能量的量子态,形成一个宏观量子相干态。
这个态可以用一个单一的宏观复数波函数,也就是序参量来描述。
即:Ψ(r, t) = |Ψ(r, t)|e^(iθ(r, t))
其中 |Ψ|2 正比于库珀对的密度,θ 是整个凝聚体的宏观相位。
在超导态下|Ψ| ≠ 0
超导序参量 Ψ(r, t) 在理论中扮演了与粒子物理中希格斯场完全相同的角色。
当系统进入超导态时,|Ψ|获得一个非零的真空期望值,这正是自发对称性破缺的标志。
序参量 Ψ 是带电的,电荷为2e,它与电磁场也就是光子耦合,而电磁理论具有U(1)局域规范对称性。
当 |Ψ| ≠ 0 时,这个U(1)规范对称性就被自发地“有效破缺”了,系统进入了希格斯相。
于是安德森-希格斯机制开始上演。
U(1)局域规范对称性的自发破缺,意味着原本应该出现一个对应“序参量相位θ”涨落的无质量戈德斯通玻色子。
但是,由于光子与带电的序参量耦合,这个相位模式就被光子“吞噬”了,也可以理解为合并了。
结果是光子在超导体这种介质中获得了纵向极化,从而表现得像一个有质量的粒子,这个质量被称为有效质量。
由无质量光子传递的电磁相互作用是长程的,按1/r2衰减。
而由有质量的粒子传递的相互作用是短程的,按 e^(-mr)/r2 指数衰减,m是粒子质量。
光子在超导体中获得了有效质量mγ,因此电磁场无法深入超导体内部,只能在表面薄层存在并呈指数衰减。
这便是迈斯纳效应的成因。
讲到这里,白牧辰关于超导相成因和特性由来的简单科普就到此为止了。
她停下在全息影像上书写物理公式的手,端起那杯早已没有温度的拿铁安静地啜饮了一口,给对面的索隆留下了充足的思考时间。
休息室内陷入了长久的沉默。
索隆的眉头紧紧地锁在一起,手指无意识地在光滑的桌面上敲击着,甚至不自觉地伸手抓了抓自己尖尖的脑壳,显得有些焦躁和滑稽,完全没有平时那种宗教领袖应有的沉稳姿态。
他感觉自己仿佛抓住了一条线索的末端,但无论如何也无法将整条线从迷雾中完整地抽出来。
白牧辰在一旁静静地看着,内心毫无波澜。
她知道,对于一个非学术圈的人来说,理解这些抽象的概念需要一次艰难的思维跃迁。
对此白牧辰并不着急,就像一个耐心的老师在等待学生自己想通答案。
终于,在纠结了几分钟后,索隆的思维找到了突破口。
他决定放弃去理解那些复杂的数学推导和物理过程,转而抓住最核心、最直观的结论——在超导体这种特殊的“相”里面,光子获得了质量。
而光子是传递电磁相互作用力的基本粒子。
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
喜欢群星:舰与灵能的太空歌剧物语请大家收藏:(m.zjsw.org)群星:舰与灵能的太空歌剧物语爪机书屋更新速度全网最快。